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bstract

1 − x)Pb(Sn1−yTiy)O3–xPb(Mg1/3Nb2/3)O3 (x = 0.1–0.4, y = 0.45–0.65) ternary system was prepared using two-step columbite precursor method.
hase structure of the synthesized ceramics was studied by using X-ray powder diffraction and the morphotropic phase boundary (MPB) curve of the

ernary system was confirmed. The isothermal map of Curie temperature (TC) in the phase diagram was obtained based on the dielectric–temperature
easurements. The coercive field EC and internal bias field Ei were found to increase with increasing PT content, while decrease with increasing PMN

ontent. The optimum properties were achieved in the MPB composition 0.8Pb(Sn0.45Ti0.55)O3–0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity

r, piezoelectric coefficient d33, planar electromechanical coupling kp, mechanical quality factor Qm and TC of being on the order of 3040, 530pC/N,
5.5%, 320 and 190 ◦C, respectively, exhibiting potential usage for high power application.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

Lead-based perovskite solid solutions have been widely
sed in various electronic devices, including piezoelec-
ric actuators, sensors, and acoustic transducers because
f their good dielectric and piezoelectric properties.1–4

mong the lead-based complex perovskites, lead magne-
ium niobate, Pb(Mg1/3Nb2/3)O3 (PMN), is a typical relaxor
erroelectric, exhibiting large dielectric permittivity and a
road diffuse transition near −15 ◦C.5 PMN-based binary
nd ternary systems, such as Pb(Mg1/3Nb2/3)O3–PbTiO3
PMN–PT),5 Pb(Mg1/3Nb2/3)O3–PbZrO3 (PMN–PZ),6

b(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMN–PZ–PT),7
b(Mg1/3Nb2/3)O3–Pb(Sc1/2Nb1/2)O3–PbTiO3 (PMN–PSN–
T)8 and Pb(Mg1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3
PMN–PZN–PT),9 exhibit high dielectric permittivity and
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iezoelectric coefficient with morphotropic phase boundary
MPB) compositions, which is attributed to the enhanced
olarizability arising from the coupling between two equivalent
nergy states, i.e. the tetragonal and rhombohedral phases
t MPB, allowing optimum domain reorientation during the
oling process.10,11 Therefore, numerous studies have been
ocused on the compositions near MPB in different perovskite
olid solutions with PMN,12–15 where good dielectric and
iezoelectric properties are expected.

Perovskite compound PbSnO3 (PSn), known to be unstable
n the pure form at atmospheric pressure,16–19 can be stabilized
ith Ti substitution.1,17 It was reported that the PbSnO3–PbTiO3

PSn–PT) binary system showed a behavior analogous to PZT,
ith good piezoelectric activity near the rhombohedral to

etragonal MPB.17 Shirasaki et al.18 prepared PSn–PT solid
olution by coprecipitation method and found that the com-
ounds with PT < 0.35 were pyrochlore phase, transforming to
b2SnO4, SnO2, and perovskite Pb(Sn1−xTix)O3 when fired at

00 ◦C. Calderón et al.19 have studied Na0.5Bi0.5TiO3 (NBT)
oped PSn–PT with compositions near MPB and found that
he addition of NBT decreased the Curie temperature (TC) of

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2011.08.038
mailto:caomaosheng@bit.edu.cn
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Fig. 1. Phase diagram of (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary system and
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Sn–PT, with piezoelectric properties changed slightly. Thus,
t is desirable to stabilize the perovskite Pb(Sn,Ti)O3 phase
nd improve the properties by adding various end members.
o date, limited work has been carried out to investigate the
b(Mg1/3Nb2/3)O3–PbSnO3–PbTiO3 (PMN–PSn–PT) ternary
ystem. In this work, PMN–PSn–PT ternary ceramics with
arious PMN and PT levels were synthesized. The phase struc-
ure, dielectric, piezoelectric and ferroelectric properties of the
ernary system were investigated systematically.

. Experimental

The PMN–PSn–PT ternary ceramics with compo-
itions of (1 − x)Pb(Sn1−yTiy)O3–xPb(Mg1/3Nb2/3)O3
(1 − x)Pb(Sn1−yTiy)O3–xPMN, x = 0.1–0.4, y = 0.45–0.65)
ere prepared using two-step columbite precursor method.
ll the compositions were selected at the proximity of the

traight line connecting the two MPBs in PMN–PT and PSn–PT
inary systems as shown in Fig. 1.5,17 The columbite precursor
gNb2O6 was synthesized at 1000 ◦C with MgO (99.9%) and
b2O5 (99.9%).20 Then, Pb3O4 (99%), TiO2 (99.9%), SnO2

99.9%) and MgNb2O6 powders were batched stoichiometri-
ally and wet-milled in alcohol for 24 h. After the slurry was
ried, the mixed powders were calcined at 800 ◦C for 4 h, to
ynthesis the perovskite compound, subsequently vibratory
illed in alcohol for 12 h. The powders were granulated, and
ressed to pellets with 12 mm in diameter. Following binder
urnout at 550 ◦C, the pellets were sintered in a sealed crucible
ontaining a PbZrO3 lead source to minimize PbO evaporation
t 1200 ◦C.

4
fi
m
C

Fig. 2. XRD patterns of (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary
omposition locations.

The density of the sintered samples was measured using
rchimedes method. The phase structure of the sintered samples
as studied using X-ray powder diffraction (XRD, PADV and
2 diffractometers, Scintag, Cupertino, CA). For electrical tests,

intered samples were polished parallel using 15 �m SiC pow-
er. Silver paste was printed to form electrodes on both sides of
he disc samples and then fired at 700 ◦C for 10 min. Poling was
arried out in silicon oil at 120 ◦C for 10 min with an electric field
f 3 kV/mm. Dielectric measurements were carried out on poled
amples using a multi-frequency precision LCRF meter (HP
184A, Hewlett Packard, Palo Alto, CA). Piezoelectric coef-

cient was measured on disk samples using a Berlincourt d33
eter (ZJ-2, Institute of Acoustics Academia Sinica, Beijing,
hina). Polarization hysteresis and strain-electric field behav-

system: (a) y = 0.5, (b) y = 0.55, (c) x = 0.2 and (d) x = 0.4.
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Fig. 3. MPB line for (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary system: rhom-
bohedral phase, � tetragonal phase, and MPB compositions.
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or were determined using a modified Sawyer-Tower circuit
riven by a lock-in amplifier (Stanford Research System, Model
R830) at a frequency of 1 Hz. The planar electromechanical
oupling factor kp and mechanical quality factor Qm were deter-
ined from the resonance and antiresonance frequencies, which
ere measured using an Impedance/Gain-phase analyzer (HP
194A, Hewlett-Packard, Palo Alto, CA) according to IEEE
tandards.21,22

. Results and discussion

.1. Structural analysis

The XRD patterns of (1 − x)Pb(Sn1−yTiy)O3–xPMN with
arious PMN/PT levels are shown in Fig. 2. It is well known that
he typical tetragonal symmetry for perovskite at room temper-
ture is characterized by (2 0 0) peak splitting around 2θ = 45◦,
hich was used to determine the MPB compositions, sepa-

ating rhombohedral and tetragonal phases.23,24 As shown in
ig. 2(a) and (b), with increasing PMN content, the (2 0 0)/(0 0 2)
eaks gradually merge to one peak, indicating the phase tran-
ition from tetragonal to rhombohedral phase, where the MPB
s found to locate at x = 0.1 for (1 − x)Pb(Sn0.5Ti0.5)O3–xPMN
nd x = 0.15–0.2 for (1 − x)Pb(Sn0.45Ti0.55)O3–xPMN, respec-
ively. In addition, with increasing PT content, the splitting
f (2 0 0) peak is found to initiate at the composition of
= 0.55 for 0.8Pb(Sn1−yTiy)O3–0.2PMN and y = 0.65 for
.6Pb(Sn1−yTiy)O3–0.4PMN, respectively, as shown in Fig. 2(c)
nd (d), indicating that the structure of the ceramics changes
rom rhombohedral to tetragonal phase, representing the
PB.
According to the XRD results, the approximate MPB curve

n the (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary system is summa-
ized in Fig. 3, including the reported MPBs for PMN–PT and

i
f
c
t

ig. 4. SEM micrographs of the fracture surface of (1 − x)Pb(Sn0.45Ti0.55)O3–xPMN
nd (f) x = 0.4.
Sn–PT binary systems, being around 68/32 and 57/43.5,17 The
rea above this MPB in the PSn/PMN side is in the rhombohe-
ral phase, while that in the lower part with more PT is in the
etragonal phase.

SEM micrographs of the fracture sur-
ace for (1 − x)Pb(Sn0.45Ti0.55)O3–xPMN and
.6Pb(Sn1−yTiy)O3–0.4PMN with different PMN and PT
ontents, are shown in Figs. 4 and 5, respectively. It is clearly
bserved that all samples are highly dense, with a dominating
ntergranular characteristic. It is found that with increasing PMN
ontent, the grain size of (1 − x)Pb(Sn0.45Ti0.55)O3–xPMN
ncreases significantly, being on the order of 6–10 �m for
= 0.1–0.2 and ∼15 �m for x = 0.25–0.4, as shown in Fig. 4,

ndicating that the increase of PMN could improve grain growth
or PMN–PSn–PT system. In addition, with increasing PT
ontent, the grain size of 0.6Pb(Sn Ti )O –0.4PMN is found
1−y y 3
o vary slightly, being on the order of ∼15 �m, as shown in

sintered at 1200 ◦C: (a) x = 0.1, (b) x = 0.15, (c) x = 0.2, (d) x = 0.25, (e) x = 0.3
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Fig. 5. SEM micrographs of the fracture surface of 0.6Pb(Sn1−yTiy)

ig. 5. The average grain sizes for all the studied compositions
re listed in Table 1.
.2. Dielectric properties

The temperature dependence of dielectric permittivity
or (1 − x)Pb(Sn1−yTiy)O3–xPMN with various PMN/PT

P
2
o
t

ig. 6. The temperature dependence of dielectric permittivity for (1 − x)Pb(Sn1−yTiy
e) x = 0.4.
.4PMN sintered at 1200 ◦C: (a) y = 0.55, (b) y = 0.6 and (c) y = 0.65.

et levels is shown in Fig. 6 and the dependence of Curie
emperature TC on PMN and PT are shown in Fig. 7. It is
learly observed from Figs. 6(a–c) and 7(a) that with increasing

◦ ◦
MN content, TC gradually decreases from 186 C to 90 C,
03 ◦C to 107 ◦C and 232 ◦C to 134 ◦C for different PT levels
f y = 0.45, y = 0.5 and y = 0.55, respectively, which is due
o the low maximum transition temperature Tm ∼ −15 ◦C of

)O3–xPMN ternary system: (a) y = 0.45, (b) y = 0.5, (c) y = 0.55, (d) x = 0.2 and
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Table 1
Dielectric and piezoelectric properties of (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary ceramics (ρ, density; ρr, relative density; G, average grain size; d33, piezoelectric
coefficient; kp, planar electromechanical coupling; Qm, mechanical quality factor; εr, dielectric permittivity; tan δ, dielectric loss; TC, Curie temperature; TR–T,
rhombohedral to tetragonal phase transition temperature).

(1 − x)Pb(Sn1−yTiy)O3 –xPMN ρ (g/cm3) ρr (%) G (�m) d33 (pC/N) kp (%) Qm εr tan δ (%) TC (◦C) TR–T (◦C)

y = 0.45 x = 0.1 8.4 97.7 6 150 23.1 160 1600 3.0 186 –
x = 0.2 8.4 97.7 8 80 12.8 220 1800 2.4 151 –
x = 0.3 8.4 97.7 14 20 – – 2500 1.4 112 83
x = 0.4 8.3 96.6 15 30 – – 3900 2.0 90 –

y = 0.5 x = 0.1 8.5 98.8 7 420 48.8 220 2040 1.3 203 120
x = 0.15 8.3 96.6 8 280 41.1 240 1580 1.4 189 142
x = 0.2 8.4 97.7 10 250 39.5 320 1250 1.0 163 140
x = 0.25 8.5 98.8 14 180 29.3 200 1480 1.8 147 125
x = 0.3 8.4 97.7 15 120 9.2 200 2670 2.0 125 93
x = 0.4 8.5 98.8 15 50 – – 3960 2.2 107 70

y = 0.55 x = 0.1 8.5 98.8 6 290 43.8 240 1680 0.7 232 –
x = 0.15 8.4 97.7 5 360 47.3 300 2300 0.9 218 –
x = 0.2 8.5 98.8 8 530 55.5 320 3040 0.5 190 –
x = 0.25 8.4 97.7 15 490 52.7 – 3340 1.2 167 98
x = 0.3 8.4 97.7 15 260 33.5 320 2090 1.0 154 120
x = 0.4 8.2 95.3 15 50 – – 2140 1.6 134 108

y = 0.6 x = 0.2 8.4 97.7 10 250 39.5 540 1750 0.4 211 –
x = 0.4 8.4 97.7 15 280 35.6 70 2240 1.6 142 100

y = 0.65 x = 0.2 8.3 96.6 10 140 25.6 570 1100 0.6 236 –
30
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x = 0.4 8.4 97.7 16 6

MN; while with increasing PT content, TC continuously
hifts to higher temperature from 151 ◦C to 236 ◦C and 90 ◦C
o 162 ◦C for the content of PMN set as x = 0.2 and x = 0.4,
espectively, as shown in Figs. 6(d and e) and 7(b), resulting
rom the high TC ∼ 490 ◦C of PT. Furthermore, as shown in
ig. 6(a–c), with increasing PMN content, the ternary solid
olution exhibits more relaxor-like characteristics, showing
roadened dielectric peaks and dispersive dielectric behavior
ith respect to frequency. In addition, the dielectric anomaly
rior to TC for some compositions can be found as shown in
ig. 6, being at the temperature below 150 ◦C, associated with

he rhombohedral to tetragonal phase transition temperature
R–T, as a result of the curved MPB.5,25 Detailed values of TC
nd TR–T for all the compositions are summarized in Table 1.

Based on the above results of dielectric–temperature curve,
n isothermal map of TC for (1 − x)Pb(Sn1−yTiy)O3–xPMN
as developed and plotted in Fig. 8. It is obvious that
ith compositions approaching PT region, TC gradually

ncreases, as shown in the isothermal map varying from left to
ight.

.3. Ferroelectric properties

Fig. 9(a) shows the bipolar polarization hysteresis and strain
lectric field loops for (1 − x)Pb(Sn0.45Ti0.55)O3–xPMN as a

unction of PMN, from which the remnant polarization Pr,
oercive field EC and internal bias field Ei as a function
f PMN can be obtained, as given in Fig. 9(b). As indi-
ated, when the PMN content is low, the hysteresis loop of

i
i

55.7 60 4780 1.2 162 –

1 − x)Pb(Sn0.45Ti0.55)O3–xPMN is asymmetric, indicative of
igh Ei in the ceramics, showing “hardening” characteristics.26

ith increasing PMN content, the hysteresis loop becomes
ore symmetric, demonstrating the decrease of Ei, as shown

n Fig. 9(b). On the other hand, the ferroelectric properties for
he compositions of 0.8Pb(Sn1−yTiy)O3–0.2PMN as a func-
ion of PT is shown in Fig. 10. The hysteresis loops are
ymmetric with low levels of PT, revealing weak Ei in the
eramics. With increasing PT content, the hysteresis loop of
.8Pb(Sn1−yTiy)O3–0.2PMN becomes asymmetric, indicating
he enhancement of Ei, which is in consistent with the results as
hown in Fig. 10(b).

Furthermore, as shown in Figs. 9(b) and 10(b), with increas-
ng PMN/PT content, Pr is found to increase significantly,
eaching the maximum value (28.9 �C/cm2) for the MPB
omposition 0.8Pb(Sn0.45Ti0.55)O3–0.2PMN (x = 0.2/y = 0.55),
bove which Pr decreases, which is due to the coexistence
f ferroelectric rhombohedral and tetragonal phases at the
PB compositions. Meanwhile, EC is found to decrease with

ncreasing PMN content, while increase with increasing PT
ontent, indicating that the domain switching becomes harder
ith higher PT, resulting from the increase of the tetragonal
hase.

.4. Piezoelectric properties
The dielectric and piezoelectric properties of all the stud-
ed compositions for (1 − x)Pb(Sn1−yTiy)O3–xPMN are listed
n Table 1. It is found that the compositions located at the MPB
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Fig. 7. (a) Curie temperature T as a function of PT and (b) Curie temperature
T
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C

C as a function of PMN for (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary system.

urve possess the optimum dielectric and piezoelectric proper-
ies with different PT levels, due to the enhanced polarizability
rising from the coupling between tetragonal and rhombohe-

ral phases. Furthermore, along the MPB curve moving from
Sn–PT side to PMN–PT side, the dielectric permittivity εr

ig. 8. Isothermal map of the Curie temperature TC for
1 − x)Pb(Sn1−yTiy)O3–xPMN ternary system.

Fig. 9. (a) The bipolar polarization hysteresis and strain electric field loops of
(1 − x)Pb(Sn0.45Ti0.55)O3–xPMN and (b) remnant polarization Pr, coercive field
EC and internal bias field Ei as a function of PMN.
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nd piezoelectric coefficient d33 dramatically increase from
040 and 420pC/N for 0.9Pb(Sn0.5Ti0.5)O3–0.1PMN to 4780
nd 630pC/N for 0.6Pb(Sn0.35Ti0.65)O3–0.4PMN, respectively,
hich is mainly attributed to the large εr of PMN.5,15 It should
e noted that the high dielectric and piezoelectric proper-
ies are achieved at the cost of TC, with TC decreasing from
03 ◦C to 162 ◦C, resulting from the increase of PMN con-
ent (low Tm ∼ −15 ◦C). Consequently, for all the compositions
tudied here, MPB composition 0.8Pb(Sn0.45Ti0.55)O3–0.2PMN
as found to exhibit high dielectric and piezoelectric prop-

rties with a moderate TC, where the εr, d33 and TC
re on the order of 530pC/N, 3040 and 190 ◦C, respec-
ively.
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Fig. 10. (a) The bipolar polarization hysteresis and strain electric field loops of
0.8Pb(Sn1−yTiy)O3–0.2PMN and (b) remnant polarization Pr, coercive field EC

and internal bias field Ei as a function of PT.
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lead titanate-lead hafnate. J Res Natl Bur Stand 1955;55:239–54.
18. Shirasaki S, Yamamura H, Muramatsu K, Takahashi K. A new pyrochlore

system, Pb(TixSn1−x)O3, and its transition to a perovskites system. Bull
. Conclusions

In conclusion, the (1 − x)Pb(Sn1−yTiy)O3–xPMN ternary
ystem with compositions near MPB were synthesized using
wo-step columbite precursor method. Phase structure, dielec-
ric, piezoelectric and ferroelectric properties were investigated
ystematically. The MPB curve and isothermal map of TC in
he phase diagram for the ternary system were obtained. The
ptimized composition was found to be the MPB composi-
ion 0.8Pb(Sn0.45Ti0.55)O3–0.2PMN, with εr of 3040, d33 of
30pC/N, kp of 55.5%, Qm of 320, tan δ of 0.5%, TC of 190 ◦C,

of 28.9 �C/cm2, E of 7.9 kV/cm and E of 1.2 kV/cm.
r C i
eramic Society 32 (2012) 441–448 447
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